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Exercices 3  
  
Exercice 3.1 

Une particule est confinée dans une boîte linéaire de longueur L entourée de parois de 
potentiel infini. L'état fondamental de ce système est décrit par la fonction d'onde suivante : 
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a) Quelle est la probabilité de trouver la particule à une position x donnée ?  

b) A quelle position se trouve la densité de probabilité maximale ?  

c) Quelle est la probabilité totale de trouver la particule dans la boîte ?  

d) Si L = 10 nm, quelle est la probabilité que la particule soit comprise entre 4:95 et 5:05 nm? 

Note : L'exercice 3.1 sera résolu au tableau lors de la séance d'exercices de ce vendredi 27 
septembre 2024.  

a) Comme nous l'avons vu, la densité de probabilité de trouver la particule à une position 
x donnée est donnée par le carré de la fonction d'onde: 

 

Et la probabilité elle-même est calculée en intégrant la densité de probabilité entre deux 
points. Par conséquent, si nous calculons la probabilité de trouver la particule à une seule 
position spécifique x, les bornes de l'intégrale sont les mêmes: 

 

La probabilité de trouver la particule à une position particulière x est égale à zéro. 

b) La position avec la plus grande probabilité correspond au maximum des fonctions de 
densité de probabilité Ψ1(x)2. La représentation graphique de la fonction d'onde montre un pic 
au milieu de la boîte. ( ), sinon elle peut être calculée. Lorsque Ψ21 est à son maximum, 
sa dérivée première doit être égale à zéro: 

 en utilisant,  

Puisque , alors   avec k un entier positif. De plus, puisque 
. 



𝑥 = 0 and 𝑥 = 𝐿	donnent également une dérivée première égale à zéro, mais ils 
correspondent à des mima et non à des maxima. Ceci peut être facilement vérifié en calculant 
la dérivée seconde de  : 

 

Par conséquent, lorsque x = 0 ou x = L, la dérivée seconde est positive alors qu'elle est 
négative pour x = L/2. Une dérivée seconde donnant des valeurs négatives correspond à un 
maximum.. 

c)  La particule est confinée dans la boîte, donc la probabilité totale de trouver la particule à 
l'intérieur de la boîte doit être de 1, ce qui peut être vérifié par intégration  de 0 to L : 

  en utilisant  

d) En suivant la même procédure, avec L = 10, on trouve : 

 

La particule a donc une probabilité d'environ 2% de se trouver entre 4.95 et 5.05 nm. 

Exercice 3.2 

L'énergie totale de la particule dans la boîte peut être calculée comme suit 
 

𝐸tot = 𝐸cin + 𝐸pot, 
où l'énergie cinétique est donnée par 

 
𝐸cin =

!
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Écrivez une expression pour l'énergie totale de la particule dans la boîte, en utilisant la 
relation de Broglie (𝑝 = 𝑚𝑣 = )

*
) et le fait que la longueur d'onde doit satisfaire aux 

conditions suivantes λ = (+
,

. Quelle est la principale implication de cette équation ? 
 
En suivant l'expression de l'énergie totale et en la substituant, on obtient: 

𝐸tot =
!
(
𝑚𝑣( + 0, 

depuis 𝐸pot = 0 à l'intérieur de la boîte. 

Enfin, en substituant la quantité de mouvement, nous obtenons: 
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Exercise 3.3 

Vrai ou faux ? 

a) L'énergie de l'état fondamental d'une particule dans une boîte (PDB) est zéro.  

b) Les niveaux d'énergie de la PDB sont équidistants.  

c) Augmenter l'énergie du PDB à l'état stable équivaut à augmenter le nombre de nœuds dans 
la fonction d'onde.  

d) Toutes les solutions de l'équation de Schrödinger indépendante du temps pour le PDB sont 
des fonctions d'onde stationnaires autorisées.  

e) La transition du PDB qui absorbe le photon de plus grande longueur d'onde se fait du 
niveau n = 1 au niveau n = 2. 

a) Faux : l'énergie d'une particule dans une boîte unidimensionnelle est décrite par        

E	(𝑛) = )!,!

3/+!
. L'état fondamental correspond à n = 1 et son énergie est supérieure à 

zéro. n = 0 n'est pas une solution pour la particule dans une boîte. 
b) Faux. Ils sont de plus en plus éloignés les uns des autres lorsque l'énergie augmente, 

car ils sont proportionnels à n2. 

c) Vrai. La fonction d'onde Ψ,(𝑥) = ;(
+
× sin -,45

+
/ a n - 1 nœuds. 

d) Vrai. L'équation de Schrödinger indépendante du temps (ĤΨ = EΨ) décrit tous les 
états stationnaires eprmis caractérisés par une valeur propre (E) et une fonction propre 
(Ψ). 

e) Vrai. ∆E ∝ n22 – n12 Ainsi, la plus petite énergie possible (correspondant à la plus 
grande longueur d'onde possible) pour une transition de n1 à n2 correspond à la 
première transition (n1 = 1 and n2= 2). 

 

Exercise 3.4 

Le concept de quantification de l'énergie est à la base de la mécanique quantique. Dans les 
systèmes atomiques, les électrons ne peuvent occuper que des niveaux d'énergie spécifiques et 
quantifiés. Toutefois, lorsqu'un photon dont l'énergie est supérieure à la différence entre deux 
niveaux d'énergie interagit avec un atome, l'électron peut passer à un niveau d'énergie supérieur 
et l'énergie excédentaire devient l'énergie cinétique de l'électron. 
 
Étant donné que : Les niveaux d'énergie de l'atome d'hydrogène sont décrits par la formule : 
 

𝐸, = −
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a) Calculer l'énergie des deux premiers niveaux d'énergie (n=1 et n=2) de l'atome 
d'hydrogène. 

b) Si l'électron de l'atome d'hydrogène absorbe un photon d'une énergie de 12 eV alors qu'il 
se trouve dans l'état fondamental (n=1), à quel niveau d'énergie, le cas échéant, l'électron 
passera-t-il ? Calculez l'énergie cinétique acquise par l'électron en raison de l'énergie 
excédentaire du photon. 

c) Sur la base de vos résultats, discutez des implications pour les systèmes atomiques 
lorsqu'ils interagissent avec des photons de haute énergie. 

 

a) En utilisant la formule fournie : 
For n=1: E1=−13.6 eV 
For n=2: E2=−3.4 eV 
 

b) L'énergie nécessaire pour passer de n=1 à n=2: ΔE=E2−E1=10.2 eV 
 
Énergie du photon donnée = 12 eV 
 
Excès d'énergie qui se transforme en énergie cinétique (KE):  
 
KE=12 eV−10.2 eV=1.8 eV 
 
Ainsi, après avoir absorbé le photon, l'électron transite vers le niveau n=2 et acquiert 
également une énergie cinétique de 1.8 eV en raison de l'énergie excédentaire du 
photon. 
 

b) Nous avons retiré cet exercice parce que l’énergie du photon, 12 eV, ne correspond à 
aucune des transitions possibles partant de 𝑛 = 1 allant jusqu’à 𝑛 > 1, le photon ne 
peut donc pas être absorbé. 
Selon le principe de quantification de l’énergie, seuls les photons/radiations avec une 
énergie parfaitement égale à la différence d’énergie entre deux niveaux, 𝑛6 	and	𝑛7 (avec 
E(n6) < EGn7H) peut être absorbé par le système pour promouvoir un électron jusqu’au 
niveau 𝑛7. 
 
 

c) Lorsque des systèmes atomiques interagissent avec des photons de haute énergie qui 
fournissent plus d'énergie que nécessaire pour une transition entre des niveaux 
quantifiés, l'énergie excédentaire n'est pas perdue. Au contraire, elle devient l'énergie 
cinétique de l'électron. L'électron peut alors se déplacer plus rapidement à l'intérieur 
de l'atome ou être complètement éjecté de l'atome, un phénomène connu en physique 
atomique sous le nom d'effet photoélectrique. 
 

c) Nous avons aussi retiré cet exercice parce que nous n’avons pas aborder les 
photons/radiations de haute énergie pendant le cours. Si la question vous intéresse, 
poursuivez la lecture de ce paragraphe. Les interactions entre les systèmes atomiques 
et les photons peuvent se diviser en trois grandes classes, catégorisées en fonction de 
la quantité d’énergie du photon incident: 



 
1. Régime de faible énergie (Visible jusqu’au proche UV): Dans cet intervalle, 

les interactions sont gouvernées pas les principes de mécanique quantique, en 
particuliers la quantification de l’énergie. Ce qui se traduit par l’apparition de 
raies spectrales discrètes sur les spectres d’absorption et d’émission de ces 
systèmes, en fonctions des différentes transition permises ou interdites selon les 
règles quantiques (tel que vu en classe !). 

2. Régime d’énergie modérée (UV): Dans cet intervalle la photo-ionisation 
domine. Lorsque l’énergie du photon est plus haute que l’énergie de liaison de 
l’électron mais toujours dans le même ordre de grandeur, le photon libère 
l’électron de son attraction au noyau, produisant ainsi un électron libre. 
L’énergie cinétique de l’électron libéré correspond à l’excès d’énergie vis-à-vis 
du potentiel d’ionisation de l’électron, tel que décrit par l’effet photo-électrique 
(tel que vu en classe !). 

3. Régime de haute énergie (rayons-X aux rayons Gamma): Pour les photons 
dont l’énergie dépasse celle de l’électron au repos (~511 keV), des processus de 
diffusion, tel que la diffusion de Thomson et Compton dominent. Pour des 
énergies encore plus hautes atteignant le MeV (gamma rays), des interactions 
plus complexes peuvent avoir lieu, en particulier la création de paires, la 
photodésintégration, et la fission photonique. Ces procédés de très haute énergie 
peuvent engendrer des interactions à la fois avec le noyau et les électrons de 
l’atome (pas vu en classe !). 

 
 
 

 


