CH-110, Fall 2024
Prof. Steinauer

Exercices 3

Exercice 3.1

Une particule est confinée dans une boite linéaire de longueur L entourée de parois de
potentiel infini. L'état fondamental de ce systéme est décrit par la fonction d'onde suivante :

Y, (x) = % X sin (nL_x)

a) Quelle est la probabilité de trouver la particule a une position x donnée ?

b) A quelle position se trouve la densité de probabilité maximale ?

c¢) Quelle est la probabilité totale de trouver la particule dans la boite ?

d) Si L = 10 nm, quelle est la probabilité que la particule soit comprise entre 4:95 et 5:05 nm?

Note : L'exercice 3.1 sera résolu au tableau lors de la séance d'exercices de ce vendredi 27
septembre 2024.

a) Comme nous 1'avons vu, la densité de probabilité de trouver la particule a une position
x donnée est donnée par le carré de la fonction d'onde:

Uy (7)? = (\/%sin (w%)) = %Sin2 (ﬂ"%)

Et la probabilité elle-méme est calculée en intégrant la densité de probabilité entre deux
points. Par conséquent, si nous calculons la probabilité de trouver la particule a une seule
position spécifique X, les bornes de l'intégrale sont les mémes:

/z U, (2)%dw

La probabilité de trouver la particule a une position particuliére x est ¢gale a zéro.
b) La position avec la plus grande probabilité correspond au maximum des fonctions de
densité de probabilité ¥(x)?. La représentation graphique de la fonction d'onde montre un pic
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au milieu de la boite. (* = %), sinon elle peut étre calculée. Lorsque P2, est 4 son maximum,
sa dérivée premicre doit étre égale a zéro:
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Puisque St (%) = 0, alors 7% =0+ k7 avec k un entier positif. De plus, puisque
zel0,L],z=1%



x = 0 and x = L donnent également une dérivée premicre égale a zéro, mais ils

correspondent a des mima et non a des maxima. Ceci peut étre facilement vérifié en calculant
O 2

la dérivée seconde de¥1 (%) :
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Par conséquent, lorsque x = 0 ou x = L, la dérivée seconde est positive alors qu'elle est
négative pour x = L/2. Une dérivée seconde donnant des valeurs négatives correspond a un
maximum..

c) La particule est confinée dans la boite, donc la probabilité totale de trouver la particule a
l'intérieur de la boite doit étre de 1, ce qui peut étre vérifié par intégration Y3 de 0 to L :
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d) En suivant la méme procédure, avec L = 10, on trouve :

5.05
= Jags V2 (z)dz = ...

$5(5.05 — 4.95) — oL {sin (2052 — sin (2r%8)} = 0.02

P(4.95 < x < 5.05)

La particule a donc une probabilité d'environ 2% de se trouver entre 4.95 et 5.05 nm.
Exercice 3.2

L'énergie totale de la particule dans la boite peut étre calculée comme suit

Etot = Ecin + Epotﬂ

ou I'énergie cinétique est donnée par
_1 2
Eun = Smve.

Ecrivez une expression pour I'énergie totale de la particule dans la boite, en utilisant la
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relation de Broglie (p = mv = X) et le fait que la longueur d'onde doit satisfaire aux
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conditions suivantes A = g Quelle est la principale implication de cette équation ?

En suivant l'expression de 1'énergie totale et en la substituant, on obtient:
1,2
EtOt = Emv + O,
depuis E,o = 0 a l'intérieur de la boite.

Enfin, en substituant la quantité de mouvement, nous obtenons:
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Exercise 3.3

Vrai ou faux ?

a) L'énergie de 1'état fondamental d'une particule dans une boite (PDB) est zéro.
b) Les niveaux d'énergie de la PDB sont équidistants.

c) Augmenter I'énergie du PDB a 1'état stable équivaut a augmenter le nombre de nceuds dans
la fonction d'onde.

d) Toutes les solutions de I'équation de Schrédinger indépendante du temps pour le PDB sont
des fonctions d'onde stationnaires autorisées.

e) La transition du PDB qui absorbe le photon de plus grande longueur d'onde se fait du
niveau n = | au niveau n = 2.

a) Faux : I'énergie d'une particule dans une boite unidimensionnelle est décrite par
h?n? _ \ X . o N
EMn) = Bmtz. L'état fondamental correspond a n = 1 et son énergie est supérieure a
zéro. n = 0 n'est pas une solution pour la particule dans une boite.
b) Faux. IIs sont de plus en plus ¢loignés les uns des autres lorsque 1'énergie augmente,
car ils sont proportionnels a n?.

¢) Vrai. La fonction d'onde W, (x) = \/% X sin (nLix) an- 1 nceuds.

d) Vrai. L'équation de Schrodinger indépendante du temps (H¥ = EW) décrit tous les
états stationnaires eprmis caractérisés par une valeur propre (E) et une fonction propre
(P).

e) Vrai. AE « ny?> —n;? Ainsi, la plus petite énergie possible (correspondant a la plus
grande longueur d'onde possible) pour une transition de n; a n» correspond a la
premicere transition (n;1 = 1 and n=2).

Exercise 3.4

Le concept de quantification de I'énergie est a la base de la mécanique quantique. Dans les
systémes atomiques, les électrons ne peuvent occuper que des niveaux d'énergie spécifiques et
quantifiés. Toutefois, lorsqu'un photon dont I'énergie est supérieure a la différence entre deux
niveaux d'énergie interagit avec un atome, I'électron peut passer a un niveau d'énergie supérieur
et I'énergie excédentaire devient I'énergie cinétique de 1'électron.

Etant donné que : Les niveaux d'énergie de l'atome d'hydrogéne sont décrits par la formule :

13.6 eV
oz

n



a) Calculer 1'énergie des deux premiers niveaux d'énergie (n=1 et n=2) de l'atome
d'hydrogene.

b) Si I'¢électron de l'atome d'hydrogeéne absorbe un photon d'une énergie de 12 eV alors qu'il
se trouve dans 1'état fondamental (n=1), a quel niveau d'énergie, le cas échéant, 1'¢électron
passera-t-il 7 Calculez I'énergie cinétique acquise par 1'électron en raison de 1'énergie
excédentaire du photon.

¢) Sur la base de vos résultats, discutez des implications pour les systémes atomiques
lorsqu'ils interagissent avec des photons de haute énergie.

a) En utilisant la formule fournie :
For n=1: E/=—13.6 eV
For n=2: E;=—3.4 eV

'z . ’ . —1 3p=2- _ Q._E.l._]g.g \V4

b) Nous avons retiré cet exercice parce que 1’énergie du photon, 12 eV, ne correspond a
aucune des transitions possibles partant de n = 1 allant jusqu’a n > 1, le photon ne
peut donc pas étre absorbé.

Selon le principe de quantification de 1’énergie, seuls les photons/radiations avec une
eénergie parfaitement €gale a la différence d’énergie entre deux niveaux, n; and n; (avec

E(n;) < E(nj)) peut étre absorbé par le systéme pour promouvoir un €électron jusqu’au
niveau n;.

c) Nous avons aussi retiré cet exercice parce que nous n’avons pas aborder les
photons/radiations de haute énergie pendant le cours. Si la question vous intéresse,
poursuivez la lecture de ce paragraphe. Les interactions entre les systemes atomiques
et les photons peuvent se diviser en trois grandes classes, catégorisées en fonction de
la quantité d’énergie du photon incident:



1.

Régime de faible énergie (Visible jusqu’au proche UV): Dans cet intervalle,
les interactions sont gouvernées pas les principes de mécanique quantique, en
particuliers la quantification de 1’énergie. Ce qui se traduit par 1’apparition de
raies spectrales discrétes sur les spectres d’absorption et d’émission de ces
systémes, en fonctions des différentes transition permises ou interdites selon les
regles quantiques (tel que vu en classe !).

Régime d’énergie modérée (UV): Dans cet intervalle la photo-ionisation
domine. Lorsque 1’énergie du photon est plus haute que I’énergie de liaison de
I’¢lectron mais toujours dans le méme ordre de grandeur, le photon libére
I’¢électron de son attraction au noyau, produisant ainsi un électron libre.
L’énergie cinétique de 1’¢électron libéré correspond a I’exces d’énergie vis-a-vis
du potentiel d’ionisation de 1’¢électron, tel que décrit par 1’effet photo-¢électrique
(tel que vu en classe !).

Régime de haute énergie (rayons-X aux rayons Gamma): Pour les photons
dont I’énergie dépasse celle de 1’¢lectron au repos (~511 keV), des processus de
diffusion, tel que la diffusion de Thomson et Compton dominent. Pour des
énergies encore plus hautes atteignant le MeV (gamma rays), des interactions
plus complexes peuvent avoir lieu, en particulier la création de paires, la
photodésintégration, et la fission photonique. Ces procédés de trés haute énergie
peuvent engendrer des interactions a la fois avec le noyau et les électrons de
I’atome (pas vu en classe !).



